

Korean Green innovations through Ulsan EIP initiative

Hung-Suck Park, Ph.D., P.E.

Professor, Department of Civil and Environmental Engineering, University of Ulsan Director, Ulsan Eco-Industrial Park center, Ulsan, South Korea

In this presentation...

Innovation Vs. Eco-innovation

- Green growth and its relevance to Korea
- Strategies and core-policies promoting green growth in Korea
- Eco-innovation in industrial complexes

Conclusion

1. Innovation Vs. Eco-innovation

Innovation

- The process that renews something that exists and <u>not the</u> introduction of something new
- can be seen as a change in the thought process for doing something, or the useful application of new inventions or discoveries
- may refer to incremental or radical and revolutionary changes in products, processes, or organizations

Source: Wikipedia

Eco-innovation

- New products and processes which provide business value but at the same time significantly reduces the environmental impacts
- (James, P (1997). "The Sustainability Circle: a new tool for product development and design", *Journal of Sustainable Product Design*)
- New field of *techno-social innovation* that focuses less on products' functions and more on environment and people.
- The promotion of eco-innovation is not only limited to products or processes but also is recently being applied in organizational level.

Typology of Eco-innovation

Source: Eco-innovation strategy, OECD

Eco-innovation vs. Innovation

- Eco-innovation represents innovation that explicitly emphasizes on the reduction of environmental impacts.
- Eco-innovation extends beyond the conventional organizational boundaries of the innovating company encompassing the changes in social norms, cultural values, and institutional structures to leverage more environmental benefits from the innovation.
- often linked with eco-efficiency, eco-design, sustainable design or sustainable innovation.

2. Green growth and its relevance to Korea

Import and export status of South Korea

(As on Dec' 2009) (Unit : US\$ million)

Green Growth – Korean context

- Grow fast and clean up later no more acceptable to Korea with heavy dependence on natural resources that are limited in the country.
- Low carbon Green growth
- growth that does not conflict with but complements the environment.
- declared as the new national paradigm for the long-term development (August 15, 2008).
- policy emphasizing environmentally sustainable economic and social progress.
- In essence, green growth need to address environmental degradation, climate change and diminishing natural resources in order to support the <u>export-driven</u> economic activities of the country.

3. Strategies and core policies promoting green growth in Korea

Vision and Goals

⇒ Action plan to materialize the Presidential Vision for "Low Carbon Green Growth"

Action plans

GHG reduction target for Green Growth

4% by 2020 from the 2005 levels (30% of the 2020 BAU levels), announcement on 17 November 2009.

4. Eco-innovation in industrial complexes

Industrial complexes in Korea

Type of industrial complexes	Number of complexes	Designated area (10 ³ m ²)	Industrial area			
			Designated area (10 ³ m²)	Utilization area (10 ³ m²)	Utilization rate (%)	
National	40	862,681	234,883	233,172	99.3	
Regional	368	422,461	125,036	119,637	95.7	
Urban hi-tech	6	720	67	67	100.0	
Agricultural	401	63,925	43,820	42,676	97.4	
Total	815	1,349,787	403,806	395,552	98.0	

(As on Dec' 2009)

- Industrial complexes are the engines of Korean economy
- National, regional, and agricultural industrial complexes
- Manufacturing industries within industrial complexes 60%, export rate - 75%, employment rate - 47%

- Densely located SME, High energy consumption, major sources of environmental pollution
- Emission of environmental pollutants, conflict with local communities

- Conversion of present industrial complexes to low carbon green growth complexes
- Reduce resource and energy, maximize efficiency, reduce environmental pollution through resource circulation such as recycling of wastes and by-products.

Waste generation, Energy consumption and CO2 emission in industrial complexes

Environmental policies stimulating sustainable development of industrial parks in Korea

Rio Earth Summit (1992) – Adoption of cleaner production and industrial ecology concepts by Korean industries to improve their environmental, social and business performance.

APEFIS - Act to Promote Environmental Friendly Industrial Structure (MKE, 1995). Korean National Cleaner Production Center establishment

- Streamlining the supporting system,

- Cleaner production transfer and dissemination (technology transfer, international collaborative projects, supply chain environmental management, environmental management system and EIPs),

- Promoting environmental industry

Industrial complexes as platforms for low carbon green growth

Eco-industrial park (EIP) project in Korea

<u>Objective</u>:

An industrial complex will be converted into a base to achieve low carbon green growth by maximizing the efficient use of raw materials and energy and reducing the generation of environmental pollutants <u>through the</u> <u>establishment of resource recycling systems that allows</u> <u>re-utilizing wastes and by-products</u>.

Gradual developments..

Establishment of Eco industrial parks (EIPs) through resource circulation network development for environmental pollution reduction and energy efficiency maximization in industrial complexes. * Based on article 4.2 of Korean law : Act to Promote Environmentally Friendly Industrial Structure (APEFIS)

Establishment of national EIP demonstration project plan (MKE)

03.10

Selection of demonstration sites: Pohang, Yeosu, Ulsan mipo-onsan

Additional selection of demonstration sites: Banwol-sihwa, Cheongju

Change of EIP ownership (KNCPC \rightarrow KICOX)

10.06

Beginning of 2nd phase EIP project

Objective

Korean EIP Master plan

Role of Ulsan EIP center in synergy development

Research and development into business

Application of eco-efficiency to an industrial complex

Eco-efficiency

Value

Concept developed by the World Business Council on Sustainable Development (WBCSD) and successfully applied by many businesses

Environmental impact (resources, pollution)

Types of synergies and selected indicators

		Environmental indicators						
Network	Type of							
		Raw material consumption		Energy consumption		CO ₂ emission		
#	exchange							
		BN	AN	BN	AN	BN	AN	
1	Steam	N/A		143.5 ton/hr	131.5 ton/hr	29.6 ton/hr	27.3 ton/hr	
2	117	24 7 2 to a /dam	15 1 4 / 1	N	1.			
2	wastewater	24.72 ton/day	15.1 ton/day	N/A		N/A		
3	Steam	N/Δ		176.8 ton/hr	156 8 ton/hr	36 991 ton/hr	32 976 ton/hr	
5	Steam	1.02	. L	170.0 101711	150.0 ton/m	50.551 tonsm	52.570 ton511	
4	Steam	N/A		526.2 ton/hr	496.2 ton/hr	47.2 ton/hr	39.1 ton/hr	
-			_					
5	Zinc powder	7900 ton/yr	6784 ton/yr	N	/A	3157 ton/yr	2841 ton/yr	
6	Steam	N/A		608 ton/hr	538 ton/hr	119.039 ton/hr	96.823 ton/hr	
					_			
7	Steam	N/A		470 ton/hr	390 ton/hr	32.597 ton/hr	16.299 ton/hr	

Note:-N/A: Not applicable; BN: Before network; AN: After network

Eco-efficiency evaluation

> EE evaluation is based on the WBCSD approach.

$$EE = \frac{EI}{\sum EN}_m$$

EI - economic performance indicator, US\$

EN - environmental performance indicator

 ΣEN_m - 'm' type of environmental factor is a function of various independent categories of resource consumption, energy consumption, and CO₂ emission.

> The calculations of resource consumption, energy consumption, and CO_2 emission are conducted separately.

Eco-efficiency evaluation

Representation of multiple evaluation items by a single indicator was made by averaging the sum of squares of the items :

$$\sum_{i=1} EN_m = NEI = \sqrt{\frac{1}{n} \sum_{i=1}^n S_i^2} \qquad \Delta EE = \frac{EE_a - EE_b}{EE_a}$$

- NEI Normalized Environmental Impact, n number of factors
- Evolution of eco-efficiency due to 'n' number of IS networks can be expressed as:

$$\sum_{i=1}^{n} \Delta EE_{i} = \left[\frac{\sum_{i=1}^{n} P_{a}}{\sum_{i=1}^{n} I_{a}} - \frac{\sum_{i=1}^{n} P_{b}}{\sum_{i=1}^{n} I_{b}}\right] = \frac{\sum_{i=1}^{n} P_{b}}{\sum_{i=1}^{n} I_{b}} \left(\frac{\sum_{i=1}^{n} I_{b}}{\sum_{i=1}^{n} I_{a}} - 1\right) = \left(\frac{\sum_{i=1}^{n} I_{b}}{\sum_{i=1}^{n} I_{a}}\right), \quad \frac{\sum_{i=1}^{n} P_{b}}{\sum_{i=1}^{n} I_{b}} = 1.0 \quad (assumed)$$
$$= \left(\frac{\sum_{i=1}^{n} I_{b}}{\sum_{i=1}^{n} I_{b}} - \sum_{i=1}^{n} I_{b}(1 - R_{i})}{\sum_{i=1}^{n} I_{b}(1 - R_{i})}\right) = \left(\frac{\sum_{i=1}^{n} R_{i}}{\sum_{i=1}^{n} (1 - R_{i})}\right), \quad \sum_{i=1}^{n} I_{b} = 1.0 \quad (assumed)$$

R – Overall environmental impact reduction in each year

Assumptions

- The total economic benefit of the companies involved in the IS networks is normalized to 1.0.
- The total environmental impact of the companies concerned before IS network establishment is normalized to 1.0 (considered as a baseline for evaluating the relative environmental performance after the establishment of synergy networks).

Enhancement of eco-efficiency of synergy networks with respect to each indicator

In submission: Journal of industrial Ecology

Eco-efficiency evolution

Continuous improvement of eco-efficiency of Ulsan EIP Development of Ulsan EIP strategy **Evaluation of Eco-Efficiency** Ulsan EIP center in Ulsan Industrial Parks Top down IS networking potential Identification (government data, Eco-center staff, Experts) Monitoring and Assessment Bottom up IS networking potential **EIP Performance Enhancement** Identification (Company, Technical forum, Experts) Feasibility study for business model (R&D, Engineering Company, Stakeholder, etc) Stakeholder satisfaction (Indicators)

5. Conclusion

- Korea's Green Growth policy targets <u>transformation of country's growth</u> <u>paradigm</u> from "quantitative growth" to low carbon "qualitative growth".
- National GHG emission reduction target of 4% by 2020 from the 2005 levels
 (30% of the 2020 BAU levels) can be achieved by the green growth strategies.
- Korean EIP project which is aimed at the *collective innovation of industrial complexes* is one of the core elements of the Korean green
 growth strategy
- The objective can not be fulfilled by technological innovation alone. Social and cultural innovations should also be considered as the integral parts of the green growth strategy.

- The eco-efficiency of individual synergy networks in the post-EIP initiative in Ulsan have resulted in increases of up to 63%.
- The evolution of seven synergy networks have resulted in an overall ecoefficiency enhancement of ~20%.
- Establishment of more synergy networks in future could result in higher ecoefficiency of the industrial complex.
- The eco-efficiency enhancement of due to the synergy networks in the post-EIP initiative in Ulsan may be deemed as an example of eco-innovation.

Announcement of Global Green Growth Institute by President Lee at the UN Climate Change Conference (December 18, 2009)

UOU welcomes you to

2013 ISIE conference

(Jointly organized by China, Japan and Korea)

Thank you

Professor, University of Ulsan 102 Dehakro, Nam-Gu, Ulsan, South Korea Tel: 052-259-1050 Fax: 052-221-0152 E-mail: parkhs@ulsan.ac.kr

Director, Ulsan EIP center 1599-23, Samsan Dong, Nam-Gu, Ulsan, Korea Tel: 052-228-1580 Fax: 052-228-1589